Enhancing Clustering by Exploiting Complementary Data Modalities in the Medical Domain
نویسندگان
چکیده
Data Clustering has been an active area of research in many different application areas, with existing clustering algorithms mostly focusing on partitioning one modality or representation of the data. In this study, we delineate and demonstrate a new, enhanced data clustering approach whose innovation is its exploitation of multiple data modalities. We propose BI-NMF, a bi-modal clustering approach based on Non Negative Matrix Factorization (NMF) that clusters two differing data modalities simultaneously. The strength of our approach is its combining of multiple aspects of the data when forming the final clusters. To assess the utility of our approach, we performed several experiments on two distinct biomedical datasets with two modalities each. Comparing the clusters of BI-NMF with NMF clusters of single data modality, we observed consistent performance enhancement across both datasets. Our experimental results suggest that BI-NMF is advantageous for boosting data clustering.
منابع مشابه
Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies
Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملVideo Abstraction in H.264/AVC Compressed Domain
Video abstraction allows searching, browsing and evaluating videos only by accessing the useful contents. Most of the studies are using pixel domain, which requires the decoding process and needs more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.264/AVC compressed domain, AVAIF. The method is based on the norm...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IFIP advances in information and communication technology
دوره 381 شماره
صفحات -
تاریخ انتشار 2012